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GENERAL THEORY OF ASYMMETRIC WAVES IN A CIRCULAR WAVEGUIDE WITH 
AN OPEN END 

L. A. Vaynshteyn 

A rigorous solution is obtained for the problem in 
which an asymmetric electric or magnetic wave propagates 
inside a circular waveguide towards its open end (semi- 
infinite tube). Since the electromagnetic field produced 
by the diffraction of this wave at the end of the tube has 
two Hertz functions, the solution is considerably more com- 
plicated than for the symmetric waves. Equations are pre- 
sented for the reflection coefficient of the incident wave 
from the open end, and also equations for the transformation 
coefficients of this wave into other waves (including the 
transformation coefficients of electric waves into magnetic 
waves and vice versa). The radiation field is investigated 
and design equations are presented for the radiation charac- 
teristics. Approximate equations are derived for the radia- 
tion field and for the reflection and transformation co- 
efficients. 

Section 1. Formulation and General Solution of the Problem 

The problem of asymmetric waves in a circular waveguide with an open end m* 
is formulated in the same way as the problem for symmetric waves (ref. 1). We 
consider a semi-infinite cylindrical tube whose lateral surface is situated at 
r=a, zX) (in a cylindrical system of coordinates r, 9 z). An electric wave 
Epl or a magnetic wave H 

is at z=O. Our purpose is to compute the electromagnetic field which results 
from the diffraction of this wave at the open end of the waveguide. 
electric and magnetic waves (p=l, 2, 3, ...) are distinguished from symmetric 
waves (p=O) which we considered earlier, by the fact that the diffraction field 
of nonsymmetric waves is characterized by two scalar functions ("the Hertz 
functions"). 
our presentation below. 
component of the electric Hertz vector is equal to 

propagates inside the tube towards the open end which 
Pl 

Nonsymmetric 

The necessity of introducing these functions will be clear from 
At this time we shall assume that the longitudinal 

11,, = sin (pcp + cpo) 11 ( r ,  z), (1) 

while the longitudinal component of the magnetic Hertz vector is equal to 

IJ,, = cos (pcp + rp,) ii (r, 2).  

The electromagnetic fields are expressed in terms of the functions n and 
N fl as follows (compare ref. 2, Chapter 8) : 

%umbers given in margin indicate pagination in original foreign text. 
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( 3 )  

The constant angle yo i s  determined by the  po la r i za t ion  of t he  wave i n c i -  & 
dent a t  t h e  open end. The time funct ion i s  taken i n  t h e  form e -id- -e - i c k t  

Functions fl and Emust  be so lu t ions  of the  equation 

1 d n  d z n  - ~ - ( r x )  -t - 4- ( P - 5) n = 0, 
r i)r dZ2 

therefore,  we seek them i n  t h e  form 

Here C i s  a contour i n  t h e  plane of the  complex var iab le  w which (compare r e f .  
1 , p.  1546) we t r a c e  pr imari ly  along t h e  r e a l  axis  and below t h e  poin t  ( s e e  
below) which corresponds t o  the  wave number of t he  inc ident  waves; J 

P P 
H ( l )  are Bessel and Hankel functions,  w=\ lk2-w2,  Imv>O ( f o r  1mk)O). 

be taken when r>a. 

and H = 

P 
The upper l i n e  of (4 )  should be taken when r<a, and the  lower l i n e  should 

The vector  of t he  surface cur ren t  dens i ty  on t h e  wal ls  of t h e  tube has t h e  
components 

j? = cos (pcp + cpo) 1 eiw' C (w) dw 

(5 )  i. 

j ,= sin (pcp + 9,) eiv' [F(w) + 5 C (w)] dw 
C 

The functions F(w) and G(w) ,  which remain unknown, should be determined from 
th ree  considerations.  

and H of t h e  magnetic f i e l d  must be continuous when r=a, z<o, i . e . ,  on the  

extension of t h e  tube ' s  wal l  we must have 

The f i rs t  of these  i s  t h a t  t he  t angen t i a l  components H 
Z 

cp 

j p  = j,=O. 
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This gives  us re la t ionships  

where the  l a t t e r  must a l s o  be v a l i d  when z=O because t h e  component j of the  

sur face  cur ren t  densi ty  a t  t he  edge of t h e  wa l l  (when z=+O ( s i c ) )  must vanish.  
We note t h a t  the  cont inui ty  of the tangent ia l  components EZ and E 

t r i c  f i e l d  when r=a are  provided by the  very expressions (4 )  f o r  n and E wri t ten  
i n  such a way so as t o  take t h i s  requirement i n t o  considerat ion.  

z 

of t h e  e lec-  
cp 

I n  t h e  second place the  following boundary conditions must be s a t i s f i e d  
on t h e  wa l l  of t he  waveguide which we consider t o  be an i d e a l  conductor: 

E,=E?=O f o r  r = a ,  z>O, 

and these  lead  us t o  re la t ionships  

where cp and J; are  the  functions 

We s h a l l  show how the  funct ions F(w) and G(w) a r e  t o  be found so t h a t  they 
s a t i s f y  the  system of func t iona l  equations (6)-(9)  t o  which our problem i s  re -  
duced. The so lu t ion  of t h i s  problem has a more complex form than f o r  t h e  case 
of symmetric waves ( r e f .  1) because w e  have only one unknown funct ion i n  the  
l a t t e r  case. 

For t h e  sake of gene ra l i t y  we assume t h a t  t h e  tube with t h e  open end con- 
t a i n s  two waves: one i s  an e l e c t r i c  wave with amplitude A and wave number -h 
while t h e  other  i s  a magnetic wave with amplitude B and wave number-E. We- 
d r a w  t h e  contour C i n  such a manner t h a t  it covers t h e  poin ts  w=-h and w=-h 
from below with a s e r i e s  of i n f i n i t e l y  narrow loops. For t he  sake of d e f i n i t e -  
ness we assume t h a t  ImkX i n  a l l  of t h e  discussions; we approach t h e  l i m i t  
Imk=O only i n  t h e  f i n a l  equations.  
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G(w) 
1. Relationship (6) will be satisfied if the function,in the lower semi- 

plarxe (i.e., when Imv93) is holomorphic everywhere with the exception of point 
w=-h where it has a simple pole with a residue B and when Iw I + m  in this semi- 
plane the function tends uniformly to zero. 

2. If the function G(w) has the properties specified above, then, in order 
that relationships (7) be satisfied, the function F( w) must be holomorphic 
everywhere in the lower semiplane Imwa with the exception of the point w=-h, 
where it must have a simple pole with residue A, and at the point w=-k where 
it must also have a simple pole. 
uniformly to zero at infinity in the lower semiplane. 

Furthermore, the product wF(w) must tend 

3 .  Relationship (8) will be satisfied if the product v4wa)F)w) is holo- 
morphic in the up er semiplane (when ImwrO) and if it tends uniformly zero in this 
semiplane when IwT- m. 

4. If the product vdwa)F(w) has the above properties, then in order for 

relationship (9) to be satisfied it is sufficient that the product 

be holomorphic in the upper semiplane everywhere, with the exception of the 
point w=k where it has a simple pole. Furthermore, this product must tend 
uniformly to zero at infinity in the upper semiplane. 

G(w) V 

The considerations presented above compel us to seek the functions F(w) 
and G( w) in the form 

where %(wa) and $*(wa) are functions which are contained in the expansion of 

functions (10) into factors (see equations (17) below) and are holomorphic in 
themselves in the lower semiplane Imw9). 

Expressions (5) for the surface current density must have the following 
form when zx): 

where the terms which have been written out correspond to the incident waves 
while the secpence of dots replace tern which characterize the current occuz- 
ring as a result of diffraction at the end. Therefore the constants F1 and G1 

in (11) are associated with the amplitudes A and B of current density by the 
following relationships : 
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where 
'pl (ma) = 'pz (-- W.) +, (wa) = +2 (- W.) 

are functions which are also contained in expansion (17). 

The constants F and G2 are determined from the requirement that the func- 2 

tion under the integral sign in (7) have no pole at w=-k, while the function under 
the integral sign in (9)  has no pole at w=k. 
tions 

This gives us two algebraic equa- 

F2-kA(---%C,+G2 k - h  

kG2 + A[ k+h 2k F, + F2) = 0, 

where 

From this we obtain the constants F2 and G 2 :  

Equations (11) -( 14) give us the desired solution to the system of func- 
tional equations (6)-(9)  and thus the solution to the formulated electro- 
dynamic problem. 

In the fiture we shall consider only those cases where there is only one 
wave traveling inside the waveguide towards the open end--an electric wave or 
a magnetic wave. 

Gl (i.e., A or B) is alternately equal to zero. 

equations (14) both of the constants F2 and G 
asymmetric waves) so that the complex electromagnetic field, which occurs dur- 
ing the diffraction of asymmetric electric or magnetic waves at the open end 
of the waveguide, will always have an electric as well as a magnetic Hertz 
flmction. Therefore, among waves which are traveling from the end of the tube 
into its interior we have all of the electric and magnetic waves with the same 
azimuthal relationship as the incident wave. 
serve as an exception in this respect because for these h O  and F2=G2=0, so that 
the electromagnetic field has only the Hertz function. 

/332 
Therefore we shall assume that one of the constants F1 or 

In this case according to 

always differ from zero (for 2 

Symmetric waves for which p=O 
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The occurrence of t h e  other  Hertz function, which i s  absent from t h e  f i e l d  
of t h e  inc ident  wave, i s  associated,  from the  mathematical po in t  of view, with 
the  fac t  t h a t  t h e  use of only one funct ion F(w) or G(w)  makes it impossible t o  
s a t i s f y  a l l  of t h e  func t iona l  e uat ions (6) - (9) ,  i . e . ,  t o  s a t i s f y  a l l  of t h e  
boundary values of t he  problem ?including t h e  condition j z = O  a t  t he  edge of t h e  
wal l .  

Sect ion 2. The Proper t ies  of t h e  Auxiliary Functions 

L e t  us introduce a dimensionless parameter 

and dimens ionless  var iab les  

where i n  t he  confines of the  present  sec t ion  we s h a l l  simply wr i t e  w, v i n  
p lace  of  w ' ,  v '  f o r  t he  sake of brev i ty .  

The breakdown of functions (10) 

i n t o  fac tors  such t h a t  t ( w )  and $,(w) a r e  holomorphic and contain 
no zeros i n  the  upper semiplane I m w S  while %(w)  and 4 ( w )  have t h e  same prop- 

e r t i e s  i n  the  lower semiplane I m w a ,  i s  obtained by means of equations 

2 

where O<%.lg(Trnn. For the  funct ion (Aw) 

~ ( w )  = In 'p (w) 'p, (w) = ell@) (w)  = e x ~ ~ v f ,  

while f o r  the  funct ion #{w) 

x (w) = In 4 (w)  (w)  = eXJW) +2 (w) = era(W). (19) 

I n  t h i s  case 

71 (w) = 'pz (- w )  41 (4 = 4, (- 4. ( 20) 

Such breakdown equations were used f requent ly  i n  the  pas t .  We designate 
v ( m = l ,  2, . . .) t h e  m-th root  of  equation m 

J p  (v) = 0 s 
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and by (m=1, 2, . . .) the m-th root of equation m 

J i  (:J,) = 0, 

where the positive numbers v and p. are placed in order of increasing magni- 

tude (generally speaking we should write .('I and 

matters we drop the superscript p and consider it to be fixed). 
the relative order of the roots v and p. is as follows: 

m m 

but in order to simplify m m 
For p=l, 2, . . . 

m m 

~ ~ < ~ ~ < ~ z < ~ r < . . . < ~ l . n < ~ m < ~ m + t l < ~ ~ ~  

The function dw) becomes equal to zero at the points %mwhere 

is the dimensionless wave number of wave E 

equal to zero at the.points i? where 

while the function ~ w )  becomes 
Pm' 

m 

is the dimensionless wave number of wave H 

E )and w" (for H 
The usual wave numbers w (for Pm' m 

) are given by the equations 
Pm m Pm 

In the final expressions we usually consider the parameter n as a real 
positive number and are concerned with the values of the functions for positive 
values of w within the limits 

(24) --x < w <%. 

Using these values of w it is .expedient to transform the initial equations 
for the functions '~1, 't2, 

symmetric waves E 
JI,, 

and Ho (ref. 1). 

$2 in the same manner as carried out earlier for 

As a result we obtain the expressions 0 
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Here n designates the number of waves E 

the waveguide for a given n, while .Tis the number of propagating waves H 
other words we assume that 

which are capable of propagating in 
Pm' 

. In 
Pm 

vn<x<vn+1 P; < X < P ; + ~ *  

We let 

S (w)  = X ( w )  + i Y(w). (27) 

The real part of the function S is equal to (the integral for X is taken 
in the principal value) 

where v ={-. The imaginary part of S when O+ In is given by the equation 0 0 
N 

V W  I 

The Wction C2 contained in the above expressions is determined from the re- 
lat ionships 

N 

62 which is given by the equations 
If, in equations (28) and (29), we replace the function n by the function 

and also replace v by and n by we obtain the real and imaginary parts 
of the function m m 

S ( w ) = j ( w )  4 iP(w). ( 3 2 )  

We note that when v>>l (or when v>a2) the following asymptotic equations 
exist for av) and av) 
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P 2 + Q  I '  C l  ii(v)= T! - k4- 7r + - 2u 

( 3 3 )  

from which we obtain the approximate equations for the higher order vm and p 
roots m 

I 

2nz m + - ( p2- -4 -  2p:1)  J. 
I ( p 2 + -  3 
i 2p-1 

V,=A m+-- 

3 
4 

l 4  
2+ rn ++) 2 + l  

The above equations make it possible to compute the functions T, 9, $1 ,& 
and $2 which are contained in the general solution of the problem on the electro- 
magnetic waves in an open tube, which has been presented above in section 1. 

In the figure we present (for p=l) the absolute value of the function A 
(l3), multiplied by.2n, and its phases arg A as a function of the parameter 
Gka. These curves oscillate respectively 
near the values p=l and n/2, and undergo 
breaks at the "critical" values of the param- 
eter u when one of the waves E or H 

changes from a damped wave to a propagating 
wave; the amplitude of these oscillations 
drops off slowly as u increases. This unique 
"resonance" behavior is also common to other 
auxiliary functions, and leads to character- 
istic breaks in the curves which show the 

Pm Pm 

frequency dependence of various physical 
quantities for a waveguide with an open end. 

Section 3 .  Current Density at the W a U .  1-J 
0 5 fff x Coefficients of Reflection and 

Transformation 

If an electric wave E which propagates through the tube with wave num- 
P' 

ber -h=-w moves into the open end of the tube, then, according to equations 
(11) -( 14) 'we have 

I (34) 
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This makes it possible for us to obtain from equation (5 ) ,  when ZX), the compo- 
nents of the surface current density on the wall of the tube, in the form 

Here 

is the transformation coefficient (for the current) of wave E 

(in this case R 

into wave E 
Pl Pm 

is simply the reflection coefficient of the wave E from the 
1 1  PI 

open 

will 
H 
Pm' 

rent 

end), while 

(37) 

be called the current transformation coefficient of the wave E into wave Pl 

Let us now consider other possibilities when a magnetic wave H with cur- 

amplitude B and wave number -h=-w, arrives at the open end of the tube. 
Pl 

N N  

~ 

In this case 
b 

B -2A kz 61 ( Y I )  
2*1 1 + A2 ( k  - A )  im ( k +  w) dk - I  - w 'p2 (wa) 

F ( w ) = - -  

and the surface current density components, when Z X ) ,  are equal to 

10 



. 

We note that for electric waves the currents flow in the longitudinal 
direction only while the magnetic waves have both a longitudinal and an azi- 
muthal component of current density. Near the critical frequency of a given 
magnetic wave the aximuthal component for the current density exceeds the 
longitudinal component. However, as the frequency is increased they become 
comparable and at frequencies which substantially exceed the critical fre- 
quency, the longitudinal component becomes the dominant one. 
the coefficients 

TI,,,, = RI,”, 

Let us introduce 

(42) - .I,.,, = ip $ TI,, 

and 

which, as we can easily see from equations (35) and (39), are the reflection 
and transformation coefficients for various waves along the longitudinal cur- 
rent component. It is expedient to utilize these quantities for large values 
of the parameter n when they all have the same dependence on n. 

The reflection and transformation coefficients determine the electromag- 
netic field inside the waveguide. 
gating waves which carry back part of the energy introduced by the incident 
wave, into the tube and which determine the field inside the tube at sufficiently 
great distances from the end where damped waves can be neglected. The best 

Usually we are interested only in the propa- 

11 

Here glm is the current transformation coefficient of the wave H 
H and is given by the expression 

into wave 
Pl 

Pm 

where R” 

of the tube. It is natural to call the quantity 

is simply the reflection coefficient for the wave H from the end 4 Pl 

Pm’ 
the current transformation coefficient for wave H into wave E 

Pt 
The coefficients R and r” give complex amplitudes for the longitu- 

1, m 1, m 
dinal component of the current density in electric waves which travel from the 
open end of the tube-and which are excited by the incident wave, while the co- 
efficients T and R determine the complex amplitudes of the azimuthal com- 

ponents of the current density for magnetic waves which move from the end of 
the tube into its interior. 

4 m 1, m 



i l l u s t r a t i o n  of t he  transformation of one wave i n t o  another i s  given by the  
power transformation coe f f i c i en t s .  If ,  f o r  example, we designate  by (Ep 

t h a t  port ion of t h e  energy i n  t h e  inc ident  wave E which i s  ca r r i ed  away by the  

inverse wave H we s h a l l  have the  following expression f o r  t h e  power t r ans fo r -  

mation coef f ic ien ts ;  

Hpm) 

P l  

Pm' 

I .  (44) 

From t he  general  equations presented above f o r  t he  cur ren t  coe f f i c i en t  
of r e f l ec t ion  and transformation, it follows t h a t  f o r  propagating waves 

These symmetry re la t ionships  must be s a t i s f i e d  i n  the  general  case for aoy 
d iscont inui ty  i n  the  waveguide. 

The terms Q$ Q,, c4 cz i n  equations (35) and (39) a re  expressed i n  terms 

of  i n t eg ra l s  along a loop which covers t he  cu t  k -k+ia .  For l a rge  values of z 
these  in t eg ra l s  decrease i n  inverse proport ion t o  some power of z. It i s  easy 
t o  show t h a t  they produce the  surface cur ren t  dens i ty  on t h e  ex te rna l  side of  
t h e  waveguide's wa l l  whereas t h e  remaining terms represent  t he  cur ren t  dens i ty  
on t h e  in t e rna l  s ide  of t he  wal l  d i r e c t l y  assoc ia ted  with waves ins ide  t h e  tube.  

Sect ion 4. The Huygens P r inc ip l e  

The most r a t i o n a l  approach for computing t h e  r ad ia t ion  i n  accordance with /348 
t h e  Huygens p r inc ip l e  cons is t s  of using an approximate expression which asso- 
c i a t e s  the r ad ia t ion  with the  electromagnetic f i e l d  of t h e  wave incident  a t  t h e  
open end. Using t h i s  method the  r ad ia t ion  f i e l d  of t h e  e l e c t r i c  wave E can 
be obtained i n  the  form P l  

(45) 
E? = - H,, = 0 

12 



I 
I 

I 

. 
where A i s  the  amplitude of the  longi tudinal  component f o r  the  current  densi ty  
of wave E while 9 i s  the  angle which i s  assoc ia ted  with the  wave number P 1' 1 

-h=-w of t h i s  wave by the  r e l a t ionsh ip  1 

k COS $1 = - h.  (46) 

By using t h i s  method we obtain equations fo r  trie magnetic wave which are  
more complicated. Spec i f i ca l ly  f o r  the  wave H i n  the  wave zone we have the  
f i e l d  P l  

where B designates  t h e  amplitude of t he  azimutkal cur ren t  dens i ty  component of 
wave H 

number -h=-w by t h e  r e l a t ionsh ip  

( s e e  equation (52 ) ) ,  while t he  angle 9 ,  i s  assoc ia ted  with i t s  wave 
P l  

N N  

1 

Here we have introduced spher ica l  coordinates R, (b 9 w i t h  the  same o r ig in  
as t h a t  of t he  coordinate system r, 
z axis (along t h e  tube) while &n corresponds t o  the  extension of t he  waveguide. 

9 z; 8=0 i s  the  d i r e c t i o n  of t he  pos i t i ve  

There a re  o ther  poss ib le  methods f o r  t he  approximate computation of  the  
r a d i a t i o n  f i e l d ,  which a re  based on the  appl icat ion of t he  Kirchhoff equations 
t o  the  aux i l i a ry  quan t i t i e s  which character ize  the  electromagnetic f i e l d .  By 
using the  Hertz e l e c t r i c  vector  we obtain exac t ly  t h e  same equation (45)  f o r  
t h e  e l e c t r i c  wave as before.  On the  other hand i f  we apply t h e  Kirchhoff equa- 
t i ons  t o  the  Hertz magnetic vector  we obtain a r ad ia t ion  f i e l d  f o r  t he  wave 
H i n  the  form 

P l  

I'n comparing the  two ca lcu la t ion  methods f o r  symmetric waves ( r e f .  1, 
sec t ion  4) ,  we note t h a t  t h e  f i rs t  method i s  t o  be p re fe r r ed  from considerat ions 
of uniqueness; a comparison of t he  radiat ion c h a r a c t e r i s t i c s  f o r  wave HO1 car-  

r i e d  out  a t  t he  same time ( r e f .  1, f i g .  7) a l s o  shows a preference f o r  t he  f i rs t  
method. For t h e  asymmetric waves i t s  advantage i s  obvious. I n  t h e  f i r s t  place 
equation (49) f o r  t he  r ad ia t ion  cha rac t e r i s t i c s  of wave H1 , shows a d ip  when 

&n which does not correspond t o  the  t rue  s t a t e  of th ings .  I n  t h e  second place,  
under t h e  condition @>l when only good r e s u l t s  can be expected from t h e  Huygens 
pr inc ip le ,  t h e  f i e l d  E =H according t o  equation (47), i s  much s t ronger  than $ 4  

13 



t h e  f i e l d  E =-H and t h i s  r e s u l t  i s  i n  good agreement with t h e  rigorous theory.  

However, according t o  equation (49) t h e  f i e l d s  E =H =O. 
c p a  

f i c p  
These r e s u l t s  requi re  t h a t  we r e j e c t  t h e  Huygens p r inc ip l e  i n  o ther  prob- 

lems when t h i s  p r inc ip l e  i s  forrnulated i n  t h e  form which u t i l i z e s  the  aux i l i a ry  
po ten t i a l s  of electromagnetic wave. This form i s  superfluous when it leads t o  
t h e  same r e s u l t s  as  t he  Huygens p r inc ip l e  f o r  f i e l d s  ( f i r s t  method) and i f  it 
produces o ther  r e s u l t s  then these  a re  completely unre l iab le .  
fu tu re  we s h a l l  i n t e r p r e t  t he  Huygens p r inc ip l e  t o  mean t h e  f i r s t  method of 
ca lcu la t ion .  

& 

Therefore, i n  t h e  

Below we compare the  Huygens p r i n c i p l e  with t h e  exact so lu t ion .  

We should l i k e  t o  poin t  out another method f o r  carrying out  t he  approxi- 
mate calculat ions which leads t o  the  same f i n a l  equations as t he  Huygens p r in -  
c i p l e  (for f i e l d s )  , but  which has c e r t a i n  methodological advantage; i n  several  
cases .  Spec i f i ca l ly  we s h a l l  assume t h a t  t he  cur ren t  densi ty  a t  the  wal l  i s  
t h e  same as  a t  t h e  wave which propagates in s ide  an i n f i n i t e  tube ( i . e . ,  when 
zx), the current  dens i ty  i s  described by the  terms of equation (5a)  which 
have been wr i t ten  out)  while along the  extension of t he  wal l  ( i . e . ,  f o r  z < 0, 
it i s  equal t o  zero) .  
d i s t r ibu t ion  a re  as  follows 

The functions F( w) and G(w)  which give t h i s  cur ren t  

A 1  
2-i w +  h 

F(7 , , )=  

f o r  t he  wave E and P 1' 

C ( W ) ' O  

f o r  the  wave H 
I? 1' 

From these  t h e  r ad ia t ion  f i e l d  can be e a s i l y  determined. Subs t i tu t ing  
functions F and G i n t o  equations (51) and (52) of t h e  next sec t ion  we again 
obta in  equations (45) and (47) of the  Huygens p r inc ip l e .  
both methods (no t  only f o r  waveguides but  f o r  o the r  r ad ia t ing  systems) may be 
e a s i l y  proven i n  the  general  form. 

The equivalence of 

Sect ion 5 .  The Radiation Charac t e r i s t i c s  

In t h e  wave zone, more p rec i se ly  outs ide t h e  waveguide a t  dis tances  R from i t s  
end such t h a t  

(50) k R 3 1  , k R s i n 2 t l s l  

we obtain the  following equations f o r  t he  Hertz funct ions from the  exact ex- 
pressions ( r e f .  4 )  by using the  method of s t eepes t  descent:  

14 
i 



From t h e  open end we have diverging spherical  waves whose electromagnetic 
f i e l d s  are equal t o  

The d i r e c t i o n a l  propagation of rad ia t ion  i s  given by the  function 

i s  t h e  power rad ia ted  ins ide  an elementary s o l i d  angle do. It follows from 
equation (52)  t h a t  

2 (9, ‘L) = sin2 (Pcp + 90) G (3) * cos2 (PP + 9”) ii (3)s  (53) 

where the  pos i t i ve  furlctions 
Because 

46) and JC) depend only on t h e  angle 9. 

da) may be ca l l ed  the  e l e c t r i c  r ad ia t ion  c h a r a c t e r i s t i c  while 29) may be 
ca l l ed  t h e  magnetic r ad ia t ion  cha rac t e r i s t i c s .  a$, 
tween t h e  e l e c t r i c  and magnetic cha rac t e r i s t i c s  

When zk0 and & n  the  funct ion 
(p) must not depend on (F; therefore ,  the following r e l a t ionsh ip  e x i s t s  be- 

Relationships (51) -( 55) may be applied t o  various approximate ca lcu la t ions .  
We s h a l l  d i s t inguish  the  r ad ia t ion  cha rac t e r i s t i c s  according t o  the  Huygens p r in -  
c i p l e  f r o m  the  exact values by the  subscr ipt  1. From equation (45) we obta in  

x r s in  4 Jp ( x  sin 4) 
@I-- 5 L c o s 9  - c0.z 3, 

where 

(57) -“ ..- (12 y1 y f = - - l ’ 4  
C X  

i s  the  power of the  wave E (p=l ,  2, . . . ) .  I n  t h e  same way, from equation 

(47) f o r  t h e  wave K p u  we have 

P l  

15 



where the 

For 

power P of wave H is equal to 
Pl 

11 he wave H 

(59) 

while, according to the Huygens principle, for all other waves 

XI (r, 9)  = GI (X) = 6, ( T )  = 0. (61) 

We return to the investigation of the exact expressions for the 
radiation field. We obtain the radiation of the electric wave from the open 
end by substituting expressions (34) for functions F and G into equations (51). 
From this it is now easy to obtain specific design equations. Thus when 
v <K<V we have the radiation characteristics for the wave E Ln the form 
1 2  Pl 

26" cos  4 - c o s  :IA 
+cos 3 - - - I 2 ,  l + A z  I - C O S ~ ~  

cos a - co* 3, 
eo. a -I- cos h, 

- .  
For any value of the parameter K the radiation characteristics of the E 

wave satisfy the relationships Pl 

16 



From expressions (62) and (63) we obtain the energy balance 

2n n 

where ( E  E ) and(E H ) are  the  r e f l ec t ion  and power transformation 

coe f f i c i en t s  introduced above (equat ions ( 4 4 ) ) .  Equation (65) i s  su i t ab le  
when v1<x<% and b<n<v2 t h e  funct ion 2 8) has an addi t iona l  mu l t ip l i e r  (63a) 

which i s  responsible  f o r  t he  addi t ion  of term ( E  

Pl '  P l  pl '  p l  

H ) i n  equation (65) .  
Pl '  P2 

If, however, t h e  wave H approaches the  open end then we obtain a f i e l d  
P l  

i n  t h e  wave zone from equations ( 5 1 )  and (52) by subs t i t u t ing  the  funct ion F 
and G from equations (38) i n t o  these expressions. 
n e t i c  c h a r a c t e r i s t i c  from t h e  general  equations f o r  t h e  wave H 

We obtain the  following mag- 
when %<x<p2: 

P l  

I n  regard t o  the  e l e c t r i c  charac te r i s t ic ,  i n  t he  case %<n<v2, when elec-  

t r i c  waves with the  same azimuthal dependence do not propagate a t  a l l ,  it i s  
equal t o  

and f o r  v <n<p2 when the  wave E 

following f a c t o r  i n t o  expression (67) : 

i s  capable of propagation we must add t h e  
1 P l  

cos 3 - cos 3, 
cos Y + cos 3, 

According t o  equations (66) and (67) t h e  t o t a l  r ad ia t ed  power i s  equal t o  

2 n  I 

[ d p  J 2 (8,  p) sin 3d3 = :: 1 [s (3) +i (a) ]s in  ad3 =P [ 1 - (H,,,, H,,)] , ( 68) 
i n  0 

where i n  the  case v1<n<k2 we have the  sum ( H  

(HPl, 

H )+(Hpl, E ) ins tead  of 
Pl '  P l  P l  

i n  equation (68) due t o  t h e  mul t ip l i e r  (67a) .  The r ad ia t ion  



cha rac t e r i s t i c s  of magnetic waves H s a t i s f y  the  following re la t ionships  a t  a l l  
frequencies : P l  

We note, i n  conclusion, t h a t  t he  Hertz funct ions (51) i n  t h e  wave zone 
a re  associated i n  the following manner: 

These equa l i t i e s  cause re la t ionships  ( 5 5 )  t o  be s a t i s f i e d .  
formation of a wave f i e l d  whose r ad ia t ion  i s  d i f f e r e n t  from zero i n  the  d i r ec t ion  
&=n i s  possible  only when both the  e l e c t r i c  and magnetic Hertz functions a re  
present  . 

They show t h a t  t he  

Sect ion 6. Approximate Equations 

Let us inves t iga te  the  form which i s  assumed by t h e  exact expressions, deduced 
above, when we have the  following condition: 

i. e., su f f i c i en t ly  la rge  ( compared t o  wavelength) r ad ia t ing  apertures .  
t h e  equations 

We use 

( s e e  re fs .  1 and 3, sec t ion  6) ,  where U and are  t h e  in t eg ra l s  

( 7 3 )  u= 1 In 'p ( x  s in  T) COS rd.: 1 In 4 ( x  s i n  7 )  cos ~ d :  
2xi  . s i n  7 -  cos S '=E S s i n c - c o s 3  

I,,, I; 

along the contour r which passes i n  the  plane of t h e  complex var iab le  T through 
t h e  point  T=O i n  the  d i r ec t ion  which provides f o r  t h e  most rap id  increase i n  
t h e  r e a l  p a r t  of funct ion cos T. Since the  contour r i s  symmetric with re -  

spec t  t o  the  point  T=O, U and v" are  odd functions of cos 8, and haxe a d i s -  
cont inui ty  a t  cos &O. If cos and w - a, t he  funct ions U and U tend t o  
zero. 

0 

0 

By using equations ( 7 2 )  we obtain the  followin expression f o r  t he  rad ia-  
t i o n  f i e l d  of wave E i n  t h e  forward ha l f  space ($<%n): 

P l  



2-0 A j;, ( Z  s i n  e * k ~ + ( ' i + Z  

l + A z  '1 . 3 . R sin 'Y s i n  - Tin :I 
1 i = (- i)"+' C -  A 

ll while in the rear half space, when o<29<2, we have 

, 

Here U is the value of the function U when ??--CY i.e., when 
1 1' 

y t  
cos 9=- 

H 

(see equation (46)), while the quantity A (13) is equal to 

N 

where U and 3 are the values of the function U and U when 9=0. 
0 0 

The diffraction field of the wave H may be represented in the same manner Pi 
Tr for the wave zone. In the forward half space, i.e., when -<?%IT the Hertz func-  

tions of this field are given by the expressions 
2 

3 ,  :I 
2- 4xz A s in  - s i n  - - I , ,  ( X  s i n  :I) , t ~ ~ + ~ l + ~  

ck- 1 +A' sin2 :I R 
l I = - ( - i ) v E B  _- 2 '  2 

while in the rear half space we have 



N 

where T t  i s  t h e  value of t h e  funct ion when ST-$,, i . e . ,  when 

Y t  cos a=-. 
U 

It i s  i n t e r e s t i n g  t o  compare the  r a d i a t i o n  f i e l d  of wave H i n  t h e  forward 
P t  

half  space given by equation (77), with t h e  f i e l d  of t h e  same wave (47) given 
by the  Huygens p r i n c i p l e .  The e x t r a c t  expression f o r  t h e  f ields E =€I differs 
from (47) by t h e  f a c t o r  a c p  

;I. ;I 
2 s in  2' sin 

l o  5;,+1,,+ti  - e  . .~ 

1 + cos :I,  cos :I t 

while f o r  f i e l d s  E =-H it d i f f e r s  by t h e  f a c t o r  
cp 3 

:I 
sin 2 

. :ti 

T 

For l a r g e  values of t he  parameter n and f o r  angles 9 and st which are close 

t o  TT, these f a c t o r s  are close t o  uni ty  so t h a t  t h e  Huygens p r i n c i p l e  f o r  forward 
rad ia t ion  must give good resu l t s .  

Making t h e  same comparison f o r  t h e  e l e c t r i c  wave E w e  can see t h a t  t he  fie:.ds 
P l  

E =H , according t o  equations 

t h e  Huygens pr inc ip le  ( 4 5 )  by 
a c p  (74), d i f f e r s  from these  same fields given by 

the  f a c t o r  

which becomes i n f i n i t e  when 9 ~ .  The presence of t h e  magnetic Hertz function 

20 



in the radiation field (i .e., the fields E =-Ha) is not conveyed at all by the 

Huygens principle; as a matter of fact, under condition (71) the magnetic Hertz 
function is small (almost for all directions) compared with the electric one, 
which can be easily seen from equation (77). 
of electric waves (which is characterized by small directionality) is not re- 
flected as well by the Huygens principle as the radiation of magnetic fields. 

(P 

Generally speaking the radiation 

\ 

e'ir1+3 0, 

The Huygens principle does not account at all for the radiation field in 
the rear half space. The physical meaning of expressions for the field in the 
rear half space under conditions (71) will be considered by us elsewhere. 

For the sake of completion we also present equations for the reflection 
and transformation coefficients in the form analogous to the equations of this 
secti .on 

(79) 

If we interpret U and to mean the integrals ( 7 3 ) ,  then all the equations 
written out above are exact; computations by means of these equations are 
rather complicated. However, when conditions (71) are satisfied, the integrals 
(73) are reduced to the universal function 

which was first introduce'd in our earlier work (ref. 3). 

Specifically 

where 

The substitution (81) usually gives us a sufficiently accurate approx- 
imation even for moderate values of H. 
produce an error for the function A (when p=l),which is less than 1 percent. 

Thus, when ~ = 4  equations (76) and (81) 



The derivation of the approximate equations completes the general theory 
of nonsymmetric waves in a circular wave guide. Numeric results for the more 
interesting types of mves will be presented elsewhere (ref. 4). 
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